In this paper, we propose an incremental parallel support vector machines (SVM) training with stochastic gradient descent (SGD) for dealing with the very large number of images and large-scale multi-class on standard personal computers (PCs). The two-class SVM-SGD algorithm is extended in several ways to develop the new incremental parallel multi-class SVM-SGD in large-scale classifications. We propose the balanced batch SGD of SVM (BBatch-SVM-SGD) for trainning two-class classifiers used in the one-versus-all strategy of the multi-class problems and the incremental training process of classifiers in parallel way on multi-core computers. The numerical test results on ImageNet datasets show that our algorithm is efficient compared to the state-of-the-art linear SVM classifiers in terms of training time, correctness and memory requirements.
Tạp chí: The International Conference of English Language Teaching 2016: Exploring New Paths to a Better Future of ELTN in a Globalised world, October 2016, Ho Chi Minh City
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên