Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 12(2024) Trang: 1-17
Tạp chí: Neural Computing and Applications

This study builds an effective forecasting model for time series based on significant improvements of the fuzzy clustering algorithm. Firstly, we use the universal set, which is the percentage change between two consecutive time points, and divide it into unequal intervals using the automatic clustering algorithm that adjusts the number of clusters. Next, we propose the networks so that establish the fuzzy relationship of the elements in the universal set and the intervals based on the improved inverse fuzzy number. Finally, a new principle for future forecasting is built based on these two improve- ments. The proposed model details the steps and is clearly illustrated through a specific numerical. The convergence of the proposed algorithm is also considered and addressed. The proposed model has demonstrated effectiveness by outper- forming many other models applied to the M3 dataset with 3,003 series, the M4 dataset with 100,000 series, and the well- known benchmark dataset. The proposed model is also applied to forecast the number of people infected and deceased due to COVID-19 in Southeast Asian countries. This application also demonstrates the advantages of the proposed model over many existing models.

Các bài báo khác
Số tạp chí 1(2024) Trang: 125-137
Tạp chí: Essays of Faculty of Law University of Pécs


Vietnamese | English






 
 
Vui lòng chờ...