Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 299(2024) Trang: 112003
Tạp chí: Knowledge-Based Systems

This study proposes a new supervised learning algorithm for probability density functions (PDFs) and effectively applies it to medical images. The proposed algorithm is demonstrated step by step, illustrated with a numerical example, and proofed the convergence. This algorithm contributes significantly to the field of recognition in four key areas. The first contribution is the improvement of determining prior probabilities by establishing a method based on the fuzzy relationship between each classified PDF and groups within the training set through cluster analysis technique. The next contribution involves developing a new measure to evaluate the level of similarity between the classified PDFs and the considered groups. Another contribution is the establishment of a new classification principle, quasi-Bayes, for PDFs. The final contribution of this study is the application of the proposed algorithm to both numerical and image data, where objects are represented as representative PDFs. Practical applications on various medical datasets with different characteristics have demonstrated the outstanding advantages of the proposed algorithm over other methods, including traditional statistics, machine learning, and deep learning approaches, based on metrics such as ACC, AUC, F1-Score, and One-way ANOVA test. Specifically, experimental results of the Skin cancer data show that the proposed algorithm achieved an ACC index of 98.024%, higher than other methods, including ResNet-50, Inception ResNet V2, and CNN with 97.33%, 97.815%, and 80.702%, respectively. Similarly, the proposed algorithm also obtained notable results for other indices such as AUC and F1-Score. Additionally, we also obtained similar results for the Brain tumour dataset.

Các bài báo khác
Số tạp chí 10(2024) Trang: 234-248
Tạp chí: Civil Engineering Journal
Số tạp chí Track 6: Computer Vision for Multimedia Applications(2024) Trang: 1-30
Tạp chí: Multimedia Tools and Applications
Số tạp chí 13(2024) Trang: 1229-1249
Tạp chí: Evolution Equations and Control Theory
Số tạp chí 32(2024) Trang: 17pp
Tạp chí: Set-Valued and Variational Analysis
Số tạp chí 16(2024) Trang: evae184
Tạp chí: Genome Biology and Evolution
Số tạp chí 4(2024) Trang: 63–74
Tác giả: Phan Văn Phúc
Tạp chí: Circular Economy and Sustainability
Số tạp chí 23(2024) Trang: 676 - 685
Tạp chí: Linguistic and Philosophical Investigations
Số tạp chí 23(2024) Trang: 1940-1956
Tạp chí: Linguistic and Philosophical Investigations


Vietnamese | English






 
 
Vui lòng chờ...