Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 14(2024) Trang: 16445-16458
Tạp chí: RSC Advances

Using DFT calculations, the structural and electronic properties of the ZZ7 p-PdSe2 nanoribbons (ZZ7) with
the four kinds of vacancy defects, including ZZ7-V
Pd, ZZ7-VSe, ZZ7-VPd+Se, and ZZ7-V2Se are studied, in
which their stability, diverse geometries, and altered electronic properties are determined through the formation energies, optimal structural parameters, electronic band structures, and DOSs. Speci
fically, the formation energies of all studied systems show significant negative values around -3.9 eV, evidencing their good thermal stability. The geometries of four defective structures exhibit different diversification, whereas only the ZZ7-V2Se structure possesses the highly enhanced feature, identified as the most effective substrate for the acetone and acetonitrile adsorption. On the electronic behaviors, the ZZ7 band structure displays the nonmagnetic metallic characteristics that become the ferromagnetic halfmetallic band structures for the ZZ7-VPd and ZZ7-VSe and the ferromagnetic semi-metallic band structures for the ZZ7-VPd+Se and ZZ7-V2Se. For adsorption of the acetone and acetonitrile on the ZZ7-V2Se structure, the energetic stability, adsorption sites, adsorption distances, charge transfers, and electronic characteristics of the adsorbed systems are determined by the adsorption energies, optimal adsorption sites, adsorption distances, Mulliken populations, and DOSs. The adsorption energies of the acetone- and acetonitrile-adsorbed ZZ7-V2Se systems display significant values at -1.2 eV and -0.86 eV at the preferable sites of 8 and 11, respectively, indicating their great adsorption ability. The adsorption mechanism of the acetone- and acetonitrile-adsorbed systems belongs to the physisorption owing to
absence of chemical bonds, in which the bond lengths of the ZZ7-V
2Se substrate show a very small deviation. Under the acetone and acetonitrile adsorptions, the ferromagnetic semi-metallic DOSs of the ZZ7-V2Se become the ferromagnetic half-metallic DOSs for the ZZ7-V2Se-acetone-8 and the ferromagnetic semiconducting DOSs for the ZZ7-V2Se-acetonitrile-11. Our systematic results can provide a complete understanding of the acetone- and acetonitrile adsorptions on the potential ZZ7-V2Se structure, which is very useful for nanosensor application.

Các bài báo khác
Số tạp chí Special issues: Challenges in Environmental Science & Engineering: Water Sustainability Through the Application of Advanced and Nature-Based Systems(2024) Trang:
Tạp chí: Environmental Science and Pollution Research
Số tạp chí Track 6: Computer Vision for Multimedia Applications(2024) Trang: 1-28
Tạp chí: Multimedia Tools and Applications


Vietnamese | English






 
 
Vui lòng chờ...