Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 15(2024) Trang: 1386-1398
Tạp chí: International Journal of Advanced Computer Science and Applications (IJACSA)

Breast cancer remains a significant illness around the world, but it has become the most dangerous when faced with women. Early detection is paramount in improving prognosis and treatment. Thus, ultrasonography has appeared as a valuable diagnostic tool for breast cancer. However, the accurate interpretation of ultrasound images requires expertise. To address these challenges, recent advancements in computer vision such as using convolutional neural networks (CNN) and vision transformers (ViT) for the classification of medical images, which become popular and promise to increase the accuracy and efficiency of breast cancer detection. Specifically, transfer learning and finetuning techniques have been created to leverage pre-trained CNN models. With a self-attention mechanism in ViT, models can effectively feature extraction and learning from limited annotated medical images. In this study3, the Breast Ultrasound Images Dataset (Dataset BUSI) with three classes including normal, benign, and malignant was utilized to classify breast cancer images. Additionally, Deep Convolutional Generative Adversarial Networks (DCGAN) with several techniques were applied for data augmentation and preprocessing to increase robustness and address data imbalance. The AttentiveEfficientGANB3 (AEGANB3) framework is proposed with a customized EfficientNetB3 model and self-attention mechanism, which showed an impressive result in the test accuracy of 98.01%. Finally, Gradient-weighted Class Activation Mapping (Grad-CAM) for visualizing the model decision

Các bài báo khác
Số tạp chí 579(2024) Trang: 3-18
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
Số tạp chí 2191(2024) Trang: 237-247
Tạp chí: Communications in Computer and Information Science (CCIS)
Số tạp chí 2190(2024) Trang: 295-310
Tạp chí: Communications in Computer and Information Science
Số tạp chí 2191(2024) Trang: 138 - 150
Tạp chí: Communications in Computer and Information Science
Số tạp chí 31(2024) Trang: 173-189
Tạp chí: The International Journal of Learning in Higher Education
Số tạp chí 22(2024) Trang: 165-171
Tạp chí: Journal of Information and Communication Convergence Engineering Journal of information and communication convergence engineering
Số tạp chí 31(2024) Trang: 219-235
Tạp chí: The International Journal of Learning in Higher Education
Số tạp chí 20(2024) Trang: 48-65
Tạp chí: International Journal of Web Information Systems
Số tạp chí 16(2024) Trang: 568-574
Tạp chí: Medicinal Plants - International Journal of Phytomedicines and Related Industries
Số tạp chí 2024(2024) Trang: 1-18
Tạp chí: Vietnam Journal of Computer Science
Số tạp chí 2310(2024) Trang: 171-182
Tạp chí: Communications in Computer and Information Science
Số tạp chí 2310(2024) Trang: 283-298
Tạp chí: Communications in Computer and Information Science
Số tạp chí 2309(2024) Trang: 254-268
Tạp chí: Communications in Computer and Information Science
Số tạp chí 2309(2024) Trang: 153-167
Tạp chí: Communications in Computer and Information Science


Vietnamese | English






 
 
Vui lòng chờ...