Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2014
Số tạp chí 6, ISSN 2072-4292(2014) Trang: 10773-10812
Tạp chí: remote sensing

Rice is the most important food security crop in Asia. Information on its seasonal extent forms part of the national accounting of many Asian countries. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland rice, especially in tropical and subtropical regions, where pervasive cloud cover in the rainy seasons precludes the use of optical imagery. Here, we present a simple, robust, rule-based classification for mapping rice area with regularly acquired, multi-temporal, X-band, HH-polarized SAR imagery and site-specific parameters for classification. The rules for rice detection are based on the well-studied temporal signature of rice from SAR backscatter and its relationship with crop stages. We also present a procedure for estimating the parameters based on "temporal feature descriptors" that concisely characterize the key information in the rice signatures in monitored field locations within each site. We demonstrate the robustness of the approach on a very large dataset. A total of 127 images across 13 footprints in six countries in Asia were obtained between October 2012, and April 2014, covering 4.78 m ha. More than 1900 in-season site visits were conducted across 228 monitoring locations in the footprints for classification purposes, and more than 1300 field observations were made for accuracy assessment. Some 1.6 m ha of rice were mapped with classification accuracies from 85% to 95% based on the parameters that were closely related to the observed temporal feature descriptors derived for each site. The 13 sites capture much of the diversity in water management, crop establishment and maturity in South and Southeast Asia. The study demonstrates the feasibility of rice detection at the national scale using multi-temporal SAR imagery with robust classification methods and parameters that are based on the knowledge of the temporal dynamics of the rice crop. We highlight the need for the development of an open-access library of temporal signatures, further investigation into temporal feature descriptors and better ancillary data to reduce the risk of misclassification with surfaces that have temporal backscatter dynamics similar to those of rice. We conclude with observations on the need to define appropriate SAR acquisition plans to support policies and decisions related to food security.

Các bài báo khác
Số tạp chí 1(2014) Trang: 35-45
Tác giả: Võ Văn Dứt
Tạp chí: International Journal of Agricultural Economics and Management.
Số tạp chí Volume 26(2014) Trang: 45-59
Tạp chí: Pacific-Asian Education
Số tạp chí Vol 11(2014) Trang: 63-91
Tạp chí: The Journal of Asia TEFL
Số tạp chí 30(3)(2014) Trang: 407-414
Tạp chí: Biotechnology in Animal Husbandry
Số tạp chí 53(2014) Trang: 8608-8614
Tạp chí: Industrial & Engineering Chemistry Research
Số tạp chí Vol. 6 (11)(2014) Trang: 868-873
Tạp chí: Journal of Economics and Behavioral Studies
Số tạp chí 4(2014) Trang: 180-195
Tạp chí: International Journal of Financial Research
Số tạp chí 52(2014) Trang: 799-803
Tạp chí: Korean Journal Of Metals And Materials
Số tạp chí DOI 10.1007/s00484-014-0942-(2014) Trang:
Tạp chí: International Journal of Biometeorology
Số tạp chí DOI: 10.1002/ldr.2321(2014) Trang: 1-10
Tạp chí: Land degradation & Development
Số tạp chí Volume 4 number 1(SE)(2014) Trang: 38-44
Tạp chí: Bahria University's Global Management Journal for Academic and Corporate Studies (GMJACS)
Số tạp chí Số 26 (4) 2014(2014) Trang: Số TT 68
Tạp chí: Livestock Research for Rural Development
Số tạp chí 2(2014) Trang: 61-82
Tạp chí: International Journal of Water Governance
Số tạp chí Vol 2(6)(2014) Trang: 1-8
Tạp chí: Nova Journal of Medical and Biological Sciences


Vietnamese | English






 
 
Vui lòng chờ...