Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
12 (2024) Trang: 9719-9737
Tạp chí: IEEE Access

Fruits and vegetables (especially, tomatoes) healthy detection are important tasks for smart agriculture. Several works have been published in tomato detection, however, there is little research on using explainable AI to detect, classify and count tomato fruit status. In this work, we propose a Tomatoes Health Check System by evaluating MobileNet models based on the physiological tomato dataset. Our research conducts experiments to evaluate the accuracy of the MobileNets, MobileNetV2 and MobileNetV3 models based on the evaluation metrics; the highest accuracy of 96.69% belongs to the MobileNetV3 model. The proposed method we suggest is to utilize Grad-CAM++ for a visual explanation of predictions made by models belonging to the MobileNets family. Subsequently, we calculate Intersection over Union metrics at various thresholds (0%, 25%, and 50%) based on each heatmap or region of importance. To assess model reliability, Grad-CAM++ is used to explain and evaluate reliability, with MobileNetV2 achieving the highest values at 100.00% (δ=0), 100.00% (δ=0.25), and 98.89% (δ=0.5). An evaluation experiment combines the YOLOv8 and MobileNetV2 algorithms using the Simple Online and Real-time Tracking (SORT) algorithm to detect, classify, and count tomatoes based on physiological characteristics in videos. Finally, the research results are utilized to develop an application system

Các bài báo khác
So-In, C., Londhe, N.D., Bhatt, N., Kitsing, M. (eds) (2023) Trang: 535-544
Tạp chí: Information Systems for Intelligent Systems
 


Vietnamese | English






 
 
Vui lòng chờ...