Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
So-In, C., Londhe, N.D., Bhatt, N., Kitsing, M. (eds) (2023) Trang: 535-544
Tạp chí: Information Systems for Intelligent Systems

Rice plays an essential role in daily meals. Therefore, planting and tending to play a significant role, however, the disease is an issue that needs attention and monitoring. In this work, we propose an approach to improve the accuracy of the prediction model using CNN algorithm on rice leaf dataset with 7532 samples with 5 different diseases such as bacterial blight, blast, red strip, tungro, and brown spot. This dataset uses data augmentation methods with rotations, width range shift 0.2, height shift 0.2, vertical flip, and horizontal flip. Finally, with the application of optimization models such as Adaptive Gradient Algorithm (Adagrad), Root Mean Square Propagation (RMSProp), and Adaptive Moment Estimation (Adam), the Adam optimal algorithm results in stability and accuracy. 98.06%, higher than the other 2 algorithms 72.70 and 96.86%.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...