Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
N. Thai-Nghe et al. (2023) Trang: 15–30
Tạp chí: Communications in Computer and Information Science book series

Deep learning algorithms have revolutionized healthcare by improving patient outcomes, enhancing diagnostic accuracy, and advanc- ing medical knowledge. In this paper, we propose an approach for symptom-based disease prediction based on understanding the intricate connections between symptoms and diseases by accurately representing symptom sets, considering the varying importance of individual symp- toms. This framework enables precise and reliable disease prediction, transforming healthcare diagnosis and improving patient care. By incor- porating advanced techniques such as a one-dimensional convolutional neural network (1DCNN) and attention mechanisms, our model captures the unique characteristics of each patient, facilitating personalized and accurate predictions. Our model outperforms baseline methods through comprehensive evaluation, demonstrating its effectiveness in disease pre- diction.

 


Vietnamese | English






 
 
Vui lòng chờ...