Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
13 (2023) Trang: 5727-5736
Tạp chí: International Journal of Electrical and Computer Engineering

The tiny machine learning (TinyML) has been considered to apply on the edge devices where the resource-constrained micro-controller units (MCUs) were used. Finding a good  platform  to deploy the TinyML effectively is very crucial. The paper aims to propose a multiple micro-controller  hardware platform for productively running the TinyML model. The proposed hardware consists of two dual-core MCUs. The first MCU is utilized for acquiring and processing input data, while the second one  is responsible for executing  the trained TinyML network. Two MCUs communicate with each other using the universal asynchronous receiver-transmitter (UART) protocol. The multi- tasking programming technique is mainly applied on the first MCU to optimize  the pre-processing new data. A three-phase motors faults classification  TinyML  model was deployed on the proposed system to evaluate the effectiveness. The experimental results prove that our proposed hardware platform was improved 34.8% of the total inference time including pre-processing data of the proposed TinyML model in comparing with single micro-controller hardware platform.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...