Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2024) Trang: 75-80
Tạp chí: 11th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2025), Yogyakarta, Indonesia on September 26-27, 2024

This paper proposes a system that automatically reads the value of the water meter using a tiny machine learning model (tinyML) running directly on the ESP32-CAM kit. A convolutional neural network (CNN)-based tinyML model is recommended to recognize meter digits before estimating a value. The digit recognition machine learning (ML) models were trained using three datasets generated from this study, including a grayscale image set, a contrast-enhanced image set using the HE algorithm, and a binary image set using the threshold determined by the adaptive threshold (AT) algorithm to find the matching set of images. The experimental results show that the proposed classification model with the input gray image and contrast-enhanced image gives the best accuracy of 98.3%, and the estimated speed is approximately 3 times per second. This accuracy is approximate compared to the previous study; however, the image data processing solution in this study provides roughly 10 times faster estimation time. Furthermore, the study shows that gray images should be used directly for the digit classification problem instead of being contrast-enhanced or converted to binary Image.

Các bài báo khác
13 (2024) Trang: 3814-3826
Tạp chí: IAES International Journal of Artificial Intelligence
 


Vietnamese | English






 
 
Vui lòng chờ...