The integration of nanotechnology and biomedicine has driven a significant interest in silver nanoparticles due to their unique properties. This study presents a novel approach by combining Tabebuia rosea flower extract and chitosan to manipulate the surface charges of synthesized silver nanoparticles. These biosynthesized nanoparticles, presenting negative, neutral, and positive charges, were thoroughly analyzed by means of a number of techniques including Ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, and Fouriertransform infrared spectroscopy. By incorporating chitosan, the zeta potential of the green-synthesized nanomaterials was modified, shifting from negative to positive. The resultant silver nanoparticles showed the zeta potentials of –24.8 mV for negatively charged particles, +22.9 mV for positively charged ones, and neutrality at approximately 0.04% chitosan. Meanwhile, the particle sizes for the negative, neutral, and positive nanomaterials were 19.7, 15.8, and 14.2 nm, respectively. The antimicrobial and anticancer activities of these biosynthesized nanoparticles were evaluated against gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica), grampositive bacteria (Bacillus subtilis, Lactobacillus fermentum, and Staphylococcus aureus), and cancer cell lines (A549, Hep-G2, KB, and MCF-7). These results highlight the crucial role of surface stabilizers, particle size, and charge in determining the biomedical potential of nanosilver particles. Notably, the biosynthesized silver nanoparticles exhibited a number of promising antimicrobial and anticancer properties, emphasizing their potential for biomedical applications.
Trung, N.D., Loc, L.C. and Tri, N., 2017. Determination of coke on promoted zirconium oxide catalysts in the isomerization re-action of pentane and hexane mixture at high pressure. Can Tho University Journal of Science. 7: 13-18.
Trung, N.D., Nhuan, N.T., Hieu, M.V. and Hong, N.T., 2020. Al2TiO5/SBA-15 promoting photocatalytic degradation of cinnamic acid. Can Tho University Journal of Science. 12(2): 45-52.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên