Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Ngoc Le Anh, Seok-Joo Koh, Thi Dieu Linh Nguyen, Jaime Lloret, Thanh Tung Nguyen (2022) Trang: 402–409
Tạp chí: Lecture Notes in Networks and Systems

Metagenomic data is one of the valuable data resources to predict human disease in personalized medicine. Metagenomic data is very potential and attracted numerous scholars to provide tools and methods to analyze and explore insights in Metagenomics. Binning techniques are promising methods to enhance disease classification on metagenomic data. This study evaluates the integration between Linear Discriminant Analysis and K-Means on preprocessing data before fetching it into prediction models. We perform our experiments on thousands of species abundance metagenomic samples of five diseases have shown that the proposed method can reach 0.913 in accuracy in disease predictions of Liver cirrhosis and obtain promising performance on other four diseases compared to other approaches.

 


Vietnamese | English






 
 
Vui lòng chờ...