This paper is to study the classification problem by Bayesian method in which estimating probability density function, and finding prior probability from real data are considered. The research also solves some complex calculations of this method by the built approximation and Matlab procedure. From the above improvements, an algorithm based on Bayesian method to classify a disease is proposed. This algorithm is applied specifically for a chronic kidney disease at the Can Tho Central General Hospital with real data. The outcome shows that the proposed algorithm has given good result in classifying this disease. Furthermore, this result also illustrates the advantages of the proposed method in comparison with the existing methods which are regularly used recently times.
TÓM TẮT
Bài viết này nghiên cứu bài toán phân loại bằng phương pháp Bayes, trong đó việc ước lượng hàm mật độ xác suất và tìm xác suất tiên nghiệm từ số liệu thực tế được xem xét. Nghiên cứu cũng giải quyết được những tính toán phức tạp của phương pháp này bởi sự xấp xỉ và chương trình Matlab được xây dựng. Từ những cải tiến trên, thuật toán phân loại bệnh bằng phương pháp Bayes được đề xuất. Thuật toán này được áp dụng cụ thể cho một tập dữ liệu thực tế bệnh suy thận mạn tại bệnh viện đa khoa Trung ương Thành phố Cần Thơ. Kết quả cho thấy thuật toán đề nghị đã cho kết quả tốt trong phân loại bệnh này. Kết quả này cũng chứng minh ưu điểm của thuật toán đề xuất so với các thuật toán được áp dụng phổ biến gần đây.
Trích dẫn: Võ Văn Tài, Trần Trung Tín, Thái Minh Trọng, Châu Ngọc Thơ và Lê Thị Kim Ngọc, 2020. Phân loại bằng phương pháp Bayes và ứng dụng trong y học. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(6A): 97-103.
Trích dẫn: Võ Văn Tài, Nguyễn Thành Luận và Trần Quốc Anh, 2016. Phân tích thống kê các nhân tố ảnh hưởng đến kết quả học tập của sinh viên Khoa Khoa học Tự nhiên Trường Đại học Cần Thơ. Tạp chí Khoa học Trường Đại học Cần Thơ. 43a: 1-9.
Trích dẫn: Võ Văn Tài, Lê Thị Kim Ngọc và Bành Văn Viên, 2018. Cải tiến tiêu chuẩn khoảng cách trong xây dựng chùm các phần tử rời rạc. Tạp chí Khoa học Trường Đại học Cần Thơ. 54(7A): 101-108.
Trích dẫn: Võ Văn Tài, Nguyễn Thị Hồng Dân và Nghiêm Quang Thường, 2017. Đánh giá khả năng trả nợ vay của khách hàng bằng các phương pháp phân loại. Tạp chí Khoa học Trường Đại học Cần Thơ. 49a: 110-117.
Trích dẫn: Võ Văn Tài, Lê Thị Mỹ Xuân, Nguyễn Thị Hồng Dân, Danh Ngọc Thắm và Nguyễn Hữu Nghĩa, 2017. Phân tích thống kê trọng lượng trẻ sơ sinh. Tạp chí Khoa học Trường Đại học Cần Thơ. 50a: 29-36.
Trích dẫn: Võ Văn Tài, Trần Thành Tiến, Châu Ngọc Thơ, Nguyễn Trang Thảo và Huỳnh Văn Hiếu, 2020. Cải tiến thuật toán phân tích chùm cho các phần tử rời rạc. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(2A): 30-36.
Tai, V.V., Dinh, P.T. and Yen, N.H., 2017. Fuzzy cluster analysis for probability density functions based on width criterion. Can Tho University Journal of Science. 7: 37-44.
Trích dẫn: Võ Văn Tài, Danh Ngọc Thắm và Nguyễn Ái Quỳnh, 2020. Phân phối tổng có trọng số của hai biến ngẫu nhiên phụ thuộc và ứng dụng trong lựa chọn danh mục đầu tư. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(Số chuyên đề: Khoa học tự nhiên)(1): 54-62.
Trích dẫn: Võ Văn Tài và Đào Thị Huyền, 2016. Phân tích thống kê tỉ lệ có việc làm của sinh viên Khoa Khoa học Tự nhiên, Trường Đại học Cần Thơ. Tạp chí Khoa học Trường Đại học Cần Thơ. 44c: 56-61.
Trích dẫn: Võ Văn Tài, Phạm Bích Như, Nguyễn Văn Pha và Nguyễn Thu Hiền, 2018. Mờ hóa chuỗi thời gian dựa vào bài toán phân tích chùm. Tạp chí Khoa học Trường Đại học Cần Thơ. 54(9A): 72-80.
Trích dẫn: Võ Văn Tài, Trang Thị Mỹ Kim, Nguyễn Thị Hồng Dân, Nguyễn Văn Quang, Lê Đại Nghiệp và Huỳnh Văn Hiếu, 2020. Một mô hình dự báo chuỗi thời gian mờ cải tiến. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(1A): 86-94.
Trích dẫn: Võ Văn Tài, Nguyễn Huỳnh Luận, Lê Thị Mỹ Xuân, La Thuận Bửu và Lê Thị Thu Thùy, 2019. Một mô hình mờ hóa chuỗi thời gian cải tiến. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(4A): 92-100.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên