This study proposes a new supervised learning algorithm for probability density functions (PDFs) and effectively applies it to medical images. The proposed algorithm is demonstrated step by step, illustrated with a numerical example, and proofed the convergence. This algorithm contributes significantly to the field of recognition in four key areas. The first contribution is the improvement of determining prior probabilities by establishing a method based on the fuzzy relationship between each classified PDF and groups within the training set through cluster analysis technique. The next contribution involves developing a new measure to evaluate the level of similarity between the classified PDFs and the considered groups. Another contribution is the establishment of a new classification principle, quasi-Bayes, for PDFs. The final contribution of this study is the application of the proposed algorithm to both numerical and image data, where objects are represented as representative PDFs. Practical applications on various medical datasets with different characteristics have demonstrated the outstanding advantages of the proposed algorithm over other methods, including traditional statistics, machine learning, and deep learning approaches, based on metrics such as ACC, AUC, F1-Score, and One-way ANOVA test. Specifically, experimental results of the Skin cancer data show that the proposed algorithm achieved an ACC index of 98.024%, higher than other methods, including ResNet-50, Inception ResNet V2, and CNN with 97.33%, 97.815%, and 80.702%, respectively. Similarly, the proposed algorithm also obtained notable results for other indices such as AUC and F1-Score. Additionally, we also obtained similar results for the Brain tumour dataset.
Trích dẫn: Võ Văn Tài, Nguyễn Thành Luận và Trần Quốc Anh, 2016. Phân tích thống kê các nhân tố ảnh hưởng đến kết quả học tập của sinh viên Khoa Khoa học Tự nhiên Trường Đại học Cần Thơ. Tạp chí Khoa học Trường Đại học Cần Thơ. 43a: 1-9.
Trích dẫn: Võ Văn Tài, Lê Thị Kim Ngọc và Bành Văn Viên, 2018. Cải tiến tiêu chuẩn khoảng cách trong xây dựng chùm các phần tử rời rạc. Tạp chí Khoa học Trường Đại học Cần Thơ. 54(7A): 101-108.
Trích dẫn: Võ Văn Tài, Nguyễn Thị Hồng Dân và Nghiêm Quang Thường, 2017. Đánh giá khả năng trả nợ vay của khách hàng bằng các phương pháp phân loại. Tạp chí Khoa học Trường Đại học Cần Thơ. 49a: 110-117.
Trích dẫn: Võ Văn Tài, Lê Thị Mỹ Xuân, Nguyễn Thị Hồng Dân, Danh Ngọc Thắm và Nguyễn Hữu Nghĩa, 2017. Phân tích thống kê trọng lượng trẻ sơ sinh. Tạp chí Khoa học Trường Đại học Cần Thơ. 50a: 29-36.
Trích dẫn: Võ Văn Tài, Trần Thành Tiến, Châu Ngọc Thơ, Nguyễn Trang Thảo và Huỳnh Văn Hiếu, 2020. Cải tiến thuật toán phân tích chùm cho các phần tử rời rạc. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(2A): 30-36.
Tai, V.V., Dinh, P.T. and Yen, N.H., 2017. Fuzzy cluster analysis for probability density functions based on width criterion. Can Tho University Journal of Science. 7: 37-44.
Trích dẫn: Võ Văn Tài, Danh Ngọc Thắm và Nguyễn Ái Quỳnh, 2020. Phân phối tổng có trọng số của hai biến ngẫu nhiên phụ thuộc và ứng dụng trong lựa chọn danh mục đầu tư. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(Số chuyên đề: Khoa học tự nhiên)(1): 54-62.
Trích dẫn: Võ Văn Tài và Đào Thị Huyền, 2016. Phân tích thống kê tỉ lệ có việc làm của sinh viên Khoa Khoa học Tự nhiên, Trường Đại học Cần Thơ. Tạp chí Khoa học Trường Đại học Cần Thơ. 44c: 56-61.
Trích dẫn: Võ Văn Tài, Phạm Bích Như, Nguyễn Văn Pha và Nguyễn Thu Hiền, 2018. Mờ hóa chuỗi thời gian dựa vào bài toán phân tích chùm. Tạp chí Khoa học Trường Đại học Cần Thơ. 54(9A): 72-80.
Trích dẫn: Võ Văn Tài, Trang Thị Mỹ Kim, Nguyễn Thị Hồng Dân, Nguyễn Văn Quang, Lê Đại Nghiệp và Huỳnh Văn Hiếu, 2020. Một mô hình dự báo chuỗi thời gian mờ cải tiến. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(1A): 86-94.
Trích dẫn: Võ Văn Tài, Nguyễn Huỳnh Luận, Lê Thị Mỹ Xuân, La Thuận Bửu và Lê Thị Thu Thùy, 2019. Một mô hình mờ hóa chuỗi thời gian cải tiến. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(4A): 92-100.
Trích dẫn: Võ Văn Tài, Trần Trung Tín, Thái Minh Trọng, Châu Ngọc Thơ và Lê Thị Kim Ngọc, 2020. Phân loại bằng phương pháp Bayes và ứng dụng trong y học. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(6A): 97-103.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên