Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
981 (2021) Trang: 81-92
Tạp chí: Studies in Computational Intelligence

In recent years, Deep Learning (DL) has gained great achievements in medicine. More specifically, DL techniques have had unprecedented success when applied to Chest X-Ray (CXR) images for disease diagnosis. Numerous scientists have attempted to develop efficient image-based diagnosis methods using DL algorithms. Their proposed methods can yield very reasonable performance on prediction tasks, but it is very hard to interpret the generated output from such deep learning algorithms. In this study, we propose a Convolutional Neural Network (CNN) architecture combining Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm to discriminate between pneumonia patients and healthy controls as well as provide the explanations for the generated results by the proposed CNN architecture. The explanations include regions of interest that can be signs for the considered disease. As shown from the results, the proposed method has achieved a promising performance and it is expected to help the radiologists and doctors in the diagnosis process.

 


Vietnamese | English






 
 
Vui lòng chờ...