Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Tran Khanh Dang, Josef Küng, Tai M. Chung, Makoto Takizawa (2021) Trang: 36–49
Tạp chí: Communications in Computer and Information Science

The coronavirus disease of the 2019 (COVID-19) pandemic has increasingly spread worldwide with tremendous damage. The human movement can make this infectious disease more contagious and become a primary concern for controlling the spread of COVID-19. Therefore, human mobility prediction, which holds an essential role in numerous applications (e.g., estimating migratory flows, traffic forecasting, urban planning, etc.), is now even more urgent for preventing the pandemic. This work presents a human mobility prediction approach based on movement patterns with k-Latest Check-ins (kLC) and an evaluation of the different radius to cover related areas for the prediction. The proposed method is evaluated on more than six million human move- ment history records of more than 70,000 users checking in at more than 168,000 locations and achieved promising results compared to the state- of-the-art. The results reveal that most of the users in Brightkite move around within about 20 familiar places with a mobility prediction accu- racy reaching 90%. In contrast, Gowalla’s users tend to extend their movement with further distances.

 


Vietnamese | English






 
 
Vui lòng chờ...