This paper presents DNet-nSA, a novel deep learning architecture designed to enhance multi-label classification of chest X-ray (CXR) images by integrating n self-attention blocks into the DenseNet framework. While convolutional neural networks (CNNs) are effective at identifying local patterns, they frequently face challenges in capturing long-range dependencies and global context, which are essential for detecting spatially distributed abnormalities in CXR images. By embedding self-attention mechanisms, DNet-nSA allows the network to better capture non-local interactions and highlight diagnostically relevant regions. We propose and evaluate two variants: DNet-1SA and DNet-2SA, corresponding to the number of self-attention modules used. Experiments conducted on the ChestX-ray14 dataset demonstrate that the proposed models outperform the baseline DenseNet, the contrastive learning approach MoCoR101, and the self-supervised learning model MoBYSwinT, achieving a notable AUC of 0.822, confirming the effectiveness of self-attention in improving multi-label CXR image classification.
Tạp chí khoa học Trường Đại học Cần Thơ
Khu II, Đại học Cần Thơ, Đường 3/2, Phường Ninh Kiều, Thành phố Cần Thơ, Việt Nam
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên