Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
2309 (2024) Trang: 153-167
Tạp chí: Communications in Computer and Information Science

In this paper, we introduce an approach to improve performance of Multi-Label Classification of X-Ray images with Self-Supervised Learning (MLCXR-SSL). The SwinT-Compact architecture is also proposed to reduce model complexity and increase computational efficiency. By leveraging contrastive learning, features/representations are extracted from a wealth of unlabeled data, thereby improving data efficiency and overcoming the challenges posed by the restricted labeling of medical data. Our contribution includes refining an architecture to effectively apply self-supervised learning (SSL) to multi-label classification problems. Additionally, we conduct extensive experiments to compare the fine-tuning of the linear classifier from the ImageNet pre-trained model with those from the unlabeled X-ray image pre-trained model. This comparison is performed on both the SwinT architecture and our proposed SwinT-Compact architecture, both based on the Swin Transformer, using the Chest X-ray 14 dataset. Results show a significant performance gain achieved by fine-tuning the unlabeled X-ray image pre-trained model compared to the ImageNet pre-trained model, especially notable in SwinT (AUC 0.809 vs. 0.77). Furthermore, our proposed architecture maintains multi-label classification performance comparable to the SwinT architecture while reducing model complexity and training time.

Các bài báo khác
22 (2024) Trang: 165-171
Tạp chí: Journal of Information and Communication Convergence Engineering Journal of information and communication convergence engineering
(2024) Trang: 353-360
Tạp chí: Kỷ yếu Hội nghị Khoa học công nghệ Quốc gia lần thứ XVII về Nghiên cứu cơ bản và ứng dụng Công Nghệ thông tin (FAIR)
Nguyen Thai-Nghe, Thanh-Nghi Do, Peter Haddawy (2023) Trang: 81-94
Tạp chí: Communications in Computer and Information Science
1925 (2023) Trang: 34-48
Tạp chí: Communications in Computer and Information Science
 


Vietnamese | English






 
 
Vui lòng chờ...