The new boosting of Least-Squares SVM (LS-SVM), Proximal SVM (PSVM), Newton SVM (NSVM) algorithms aim at classifying very large datasets on standard personal computers (PCs). We extend the PSVM, LS-SVM and NSVM in several ways to efficiently classify large datasets. We developed a row incremental version for datasets with billions of data points. By adding a Tikhonov regularization term and using the Sherman-Morrison-Woodbury formula, we developed new algorihms to process datasets with a small number of data points but very high dimensionality. Finally, by applying boosting including AdaBoost and Arcx4 to these algorithms, we developed classification algorithms for massive, very-high-dimensional datasets. Numerical test results on large datasets from the UCI repository showed that our algorithms are often significantly faster and/or more accurate than state-of-the-art algorithms LibSVM, CB-SVM, SVM-perf and LIBLINEAR.
Đỗ Thanh Nghị, Phạm Nguyên Khang, Nguyễn Minh Trung, 2014. PHÂN LỚP DỮ LIỆU VỚI GIẢI THUẬT NEWTON SVM. Tạp chí Khoa học Trường Đại học Cần Thơ. 32: 35-41
Đỗ Thanh Nghị, Phạm Nguyên Khang, Nguyễn Minh Trung, Trịnh Trung Hưng, 2014. PHÁT HIỆN MÔN HỌC QUAN TRỌNG ẢNH HƯỞNG ĐẾN KẾT QUẢ HỌC TẬP SINH VIÊN NGÀNH CÔNG NGHỆ THÔNG TIN. Tạp chí Khoa học Trường Đại học Cần Thơ. 33: 49-57
Đỗ Thanh Nghị, Trần Cao Đệ, 2014. KếT HợP NGữ NGHĩA VớI MÔ HìNH TúI Từ Để CảI TIếN GIảI THUậT K LáNG GIềNG TRONG PHÂN LớP VăN BảN NGắN. Tạp chí Khoa học Trường Đại học Cần Thơ. 34: 66-73
Đỗ Thanh Nghị, Phạm Nguyên Khang, Nguyễn Nhị Gia Vinh, Văn Phạm Đăng Trí, 2013. SO SÁNH CÁC MÔ HÌNH DỰ BÁO LƯỢNG MƯA CHO THÀNH PHỐ CẦN THƠ. Tạp chí Khoa học Trường Đại học Cần Thơ. Chuyên Đề CNTT: 80-90
Đỗ Thanh Nghị, Phạm Nguyên Khang, 2013. PHÂN LOẠI VĂN BẢN: MÔ HÌNH TÚI TỪ VÀ TẬP HỢP MÔ HÌNH MÁY HỌC TỰ ĐỘNG. Tạp chí Khoa học Trường Đại học Cần Thơ. 28: 9-16
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên