Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
739 (2021) Trang: 107-116
Tạp chí: Lecture Notes in Electrical Engineering

In recent years, personalized medicine has been discovered by scientists to improve existing curative methods. These studies are mainly performed on metage- nomic datasets which is the large dataset related to many human diseases, especially genetic data. The development of machine learning models and related algorithms has enabled us to speed up computation and improve disease diagnosis accuracy. However, due to the large dataset and the rather complicated processing of the data, we encountered certain difficulties. Therefore, we propose an approach to the task of selecting features based on the explanatory model. This approach is made up of proposing a small set of features from the original, implemented with Explanations with Saliency Maps. The results exhibit better performances comparing to random feature selection. Explanations generated by Saliency Maps have provided a promis- ing method in selecting features and are expected to apply in practical cases.

 


Vietnamese | English






 
 
Vui lòng chờ...