As devices continue to shrink, the parameter shift due to process variation and aging effects has an increasing impact on the circuit yield and reliability. However, predicting how long a circuit can maintain its design yield above the design specification is difficult because the design yield changes during the aging process. Moreover, performing Monte Carlo (MC) simulation iteratively during aging analysis is infeasible. Therefore, most existing approaches ignore the continuity during simulations to obtain high speed, which may result in accumulation of extrapolation errors with time. In this paper, an incremental simulation technique is proposed for lifetime yield analysis to improve the simulation speed while maintaining the analysis accuracy. Because aging is often a gradual process, the proposed incremental technique is effective for reducing the simulation time. For yield analysis with degraded performance, this incremental technique also reduces the simulation time because each sample is the same circuit with small parameter changes in the MC analysis. When the proposed dynamic aging sampling technique is employed, 50× speedup can be obtained with almost no decline accuracy, which considerably improves the efficiency of lifetime yield analysis.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên