Doubly-fed induction generator (DFIG) wind turbine (WT) is an integrated part of distributed generation system. The use of DFIG in wind farms is growing rapidly because of its advantages in decoupled active and reactive power control. However, one of the main disadvantages of DFIG is that it is very sensitive to grid faults. To analysis dynamic behaviors of DFIG during grid faults, a model including wind wheel, wind speed, drive train, generator, and converters has been proposed. This paper examines the use of distribution static compensator (D-STATCOM) as a dynamic voltage restorer at the point of common coupling (PCC) to improve the grid fault ride-through (FRT) capability and thereby protecting system stability during disturbances. The simulation results illustrate the transient responses of DFIG when a sudden short circuit at PCC is introduced. Besides, the paper also shows detailed comparisons of the transient behaviors between DFIG and conventional induction generator wind turbine under grid fault conditions.
Tạp chí: Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2016 (2016)
Tạp chí: the 6th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, August 1-6, Greater Noida, India
Tạp chí: 32ème Conférence sur la Gestion de Données - Principes, Technologies et Applications (BDA 2016), Futuroscop - Poitiers - France, 15 au 18 Novembre, 2016
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên