Cancer incidence is usually relatively low, skin diseases are not paid enough attention, and most patients, when admitted to the hospital, are in a late state which is already much damage and mak- ing it difficult to treat. Some diseases have so many similarities that it is difficult to distinguish between diseases when viewed with the naked eye. Currently, the trends of applying artificial intelligence techniques to support medical imaging diagnosis are vigorously applied and achieved many achievements with deep learning in image recognition. Deep archi- tectures are complex and heavy, while shallow architectures also bring good performance with some appropriate configurations. This study investigates configurations of shallow convolutional neural networks for binary classification tasks to support skin disease diagnosis. Our work focuses on studying and evaluating the effectiveness of simple architec- tures with high accuracy on the problem of skin disease identification through images. The experiments on eight considered skin diseases have revealed that shallow architectures can perform better on small image sizes (32×32) rather than larger ones (128×128) with more than 0.75 in accuracy on all considered diseases.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên