Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2022
Số tạp chí 47(2022) Trang: 1-16
Tạp chí: Gene Expression Patterns

The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster RCNN), Region-based Fully Convolutional Networks (RFCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hem- angiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver.

Các bài báo khác
Số tạp chí 6(2022) Trang: 1114-1133
Tạp chí: Emerging Science Journal
Số tạp chí 1(2022) Trang:
Tạp chí: Journal of the Operations Research Society of China
Số tạp chí 1(2022) Trang: 1-22
Tạp chí: Neural Computing and Applications
Số tạp chí 11(2022) Trang: 1-20
Tạp chí: International Journal of Fuzzy System Applications
Số tạp chí 1(2022) Trang: 1-16
Tạp chí: International Journal of Machine Learning and Cybernetics
Số tạp chí 2(2022) Trang: 2-11
Tạp chí: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Số tạp chí 30(2022) Trang: 625-648
Tạp chí: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Số tạp chí 12(2022) Trang: 567-575
Tạp chí: Res Militaris (European Journal of Military Studies)
Số tạp chí 42(2022) Trang: 899-908
Tạp chí: Indian Journal of Environmental Protection
Số tạp chí 42(2022) Trang: 1061-1070
Tạp chí: Indian Journal of Environmental Protection
Số tạp chí 14(2022) Trang: 1-18
Tạp chí: International Journal of Information Systems in the Service Sector
Số tạp chí 12(2022) Trang: 130-137
Tạp chí: Asian Journal of Agriculture and Rural Development
Số tạp chí 43(2022) Trang: 1185-1208
Tạp chí: Managerial and Decision Economics


Vietnamese | English






 
 
Vui lòng chờ...