A collaborative integration between cloud and edge computing is proposed to be able to exploit the advantages of both technologies. However, most of the existing studies have only considered two-tier cloud-edge computing systems which merely support vertical offloading between local edge nodes and remote cloud servers. This paper thus proposes a generic architecture of cloud-edge computing with the aim of providing both vertical and horizontal offloading between service nodes. To investigate the effectiveness of the design for different operational scenarios, we formulate it as a workload and capacity optimization problem with the objective of minimizing the system computation and communication costs. Because such a mixed-integer nonlinear programming (MINLP) problem is NP-hard, we further develop an approximation algorithm which applies a branch-and-bound method to obtain optimal solutions iteratively. Experimental results show that such a cloud-edge computing architecture can significantly reduce total system costs by about 34%, compared to traditional designs which only support vertical offloading. Our results also indicate that, to accommodate the same number of input workloads, a heterogeneous service allocation scenario requires about a 23% higher system costs than a homogeneous scenario.
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Context-Aware Systems and Applications, and Nature of Computation and Communication
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên