The new boosting of Least-Squares SVM (LS-SVM), Proximal SVM (PSVM), Newton SVM (NSVM) algorithms aim at classifying very large datasets on standard personal computers (PCs). We extend the PSVM, LS-SVM and NSVM in several ways to efficiently classify large datasets. We developed a row incremental version for datasets with billions of data points. By adding a Tikhonov regularization term and using the Sherman-Morrison-Woodbury formula, we developed new algorihms to process datasets with a small number of data points but very high dimensionality. Finally, by applying boosting including AdaBoost and Arcx4 to these algorithms, we developed classification algorithms for massive, very-high-dimensional datasets. Numerical test results on large datasets from the UCI repository showed that our algorithms are often significantly faster and/or more accurate than state-of-the-art algorithms LibSVM, CB-SVM, SVM-perf and LIBLINEAR.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên