The solution speciation of the ZrIV-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2:2) was fully determined under different pD, temperature, and concentration conditions. Subsequently, phosphodiester bond hydrolysis of the DNA model substrate bis(4- nitrophenyl) phosphate (BNPP) promoted by ZrK 2:2 was studied in detail. In the presence of ZrK 2:2, phosphoester bond hydrolysis in BNPP proceeded with a rate constant of kobs = (4.750.25)10–6 s–1 at pD 6.4 and 60 °C, which represented a 320-fold rate enhancement relative to the spontaneous hydrolysis of BNPP. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. An activation energy (Ea) of 60.16 kJmol–1, enthalpy of activation (ΔH#) of 57.44 kJmol–1, entropy of activation (ΔS#) of –173.16 Jmol–1K–1, and Gibbs activation energy (ΔG#) of 111.12 kJmol–1 at 37 °C were calculated. The influence of the concentration of ZrK 2:2 on the reaction rate constant was studied in the concentration range 0.5 to 6.0 mM. The results showed that ZrK 2:2 is able to hydrolyze an excess amount of BNPP, thus demonstrating that ZrK 2:2 acts as a catalyst for phospho(di)ester bond hydrolysis. In addition, the influence of ionic strength and the inhibitor diphenyl phosphate on BNPP hydrolysis were examined.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên