The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment onZ without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (Pω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên