Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
2191 (2024) Trang: 237-247
Tạp chí: Communications in Computer and Information Science (CCIS)

Machine learning models have been widely used in many applications in almost all areas of social life. Random forest is a supervised machine learning model that combines the results of multiple decision trees to achieve a single result using closure. Due to the ease of use and flexibility of the random forest machine learning model, there has been a push for its adoption in practical applications of both regression and classification problems. To fit the random forest machine
learning model to different problems, the model parameters must be adjusted. Choosing the best parameter configuration for the model has a direct impact on the model’s performance. In this article, the parameters of the random forest model and parameter optimization algorithms are studied in detail. Furthermore, the study also tested different benchmark datasets to compare the performance of random forest model parameter optimization methods.

Các bài báo khác
579 (2024) Trang: 102-114
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
 


Vietnamese | English






 
 
Vui lòng chờ...