Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 15, No. Special issue: ISDS (2023) Trang: 142-152

The present study meticulously investigates optimization strategies for real-time sign language recognition (SLR) employing the MediaPipe framework. We introduce an innovative multi-modal methodology, amalgamating four distinct Long Short-Term Memory (LSTM) models dedicated to processing skeletal coordinates ascertained from the MediaPipe framework. Rigorous evaluations were executed on esteemed sign language datasets. Empirical findings underscore that the multi-modal approach significantly elevates the accuracy of the SLR model while preserving its real-time capabilities. In comparative analyses with prevalent MediaPipe-based models, our multi-modal strategy consistently manifested superior performance metrics. A distinguishing characteristic of this approach is its inherent adaptability, facilitating modifications within the LSTM layers, rendering it apt for a myriad of challenges and data typologies. Integrating the MediaPipe framework with real-time SLR markedly amplifies recognition precision, signifying a pivotal advancement in the discipline.

 


Vietnamese | English






 
 
Vui lòng chờ...