Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2023) Trang: 1-25
Tạp chí: Computational Statistics

This study presents a novel algorithm for image classification based on a quasi- Bayesian approach and the extraction of probability density functions (PDFs). First, representative PDFs are extracted from each image using its features. Next, a meas- ure is developed to evaluate the similarity between the extracted PDFs. Finally, an algorithm is established for determining prior probabilities using fuzzy clustering techniques. By combining these improvements, we develop a more efficient algo- rithm for classifying image data. An image is assigned to a specific group if it has the highest value of prior probability and a similar level to that group. We explain the proposed algorithm step-by-step with a numerical example and clearly demon- strate its convergence. When applied to multiple image datasets, the proposed algo- rithm has shown stability and efficiency, outperforming many other statistical and machine learning methods. Additionally, we have developed a Matlab procedure to apply the proposed algorithm to real image datasets. These applications demonstrate the potential of research in various fields related to the digital revolution and artifi- cial intelligence.

 


Vietnamese | English






 
 
Vui lòng chờ...