Classification is a fundamental problem in statistics and data science, and it has gar- nered significant interest from researchers. This research proposes a new classification algorithm that builds upon two key improvements of the Bayesian method. First, we introduce a method to determine the prior probabilities using fuzzy clustering tech- niques. The prior probability is determined based on the fuzzy level of the classified element within the groups. Second, we develop the probability density function using Vine Copula. By combining these improvements, we obtain an automatic classifi- cation algorithm with several advantages. The proposed algorithm is presented with specific steps and illustrated using numerical examples. Furthermore, it is applied to classify image data, demonstrating its significant potential in various real-world applications. The numerical examples and applications highlight that the proposed algorithm outperforms existing methods, including traditional statistics and machine learning approaches
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên