Bài viết trình bày một số hạn chế của phương pháp mô phỏng Monte Carlo cơ bản (Monte Carlo Naïve - MCN). Phương pháp này được sử dụng để ước lượng xác suất sự kiện hiếm (các sự kiện có xác suất xảy ra rất bé). Trong phương pháp MCN, để có thể quan sát được những sự kiện hiếm cần phải khởi tạo các mẫu mô phỏng có kích thước rất lớn. Hạn chế này có thể được giải quyết bằng cách sử dụng một thuật toán Entropy chéo (Cross Entropy - CE). Kết quả áp dụng số được trình bày ở phần cuối cùng sẽ làm rõ hơn tính ưu việt của phương pháp này.
Trích dẫn: Trần Văn Lý, Lê Thị Hải Yên, Nguyễn Huyền Trang, Trần Kim Yến, Bùi Minh Trung và Lâm Quốc Toàn, 2016. Phân tích hồi quy xu thế và một áp dụng thú vị. Tạp chí Khoa học Trường Đại học Cần Thơ. 45a: 118-125.
Trích dẫn: Trần Văn Lý, Nguyễn Tử Thịnh, Nguyễn Dương Thanh Phú, Trà Đức Phô và Trần Văn Trọng, 2020. Sử dụng thuật toán Entropy chéo và chọn mẫu Gibbs để ước lượng xác suất sự kiện hiếm. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(Số chuyên đề: Khoa học tự nhiên)(1): 46-53.
Trích dẫn: Trần Văn Lý, Đặng Hoàng Tâm, Lê Thị Mỹ Xuân, Nguyễn Thị Tú Anh và Trần Văn Trọng, 2019. Sử dụng mô hình Markov ẩn để phân tích sự chuyển đổi trạng thái ngẫu nhiên của quá trình giá cổ phiểu. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(6A): 51-56.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên