Road traffic sign detection and recognition using HOG feature and Artificial Neural network
Từ khóa:
Hệ thống giao thông thông minh, biển báo giao thông đường bộ, đặc trưng HOG, mạng Nơron, máy học vectơ hỗ trợ
Keywords:
Intelligent transport system, Road traffic signs, HOG features, Neural network, support vector machine (SVM)
ABSTRACT
In this paper, we proposed computer vision and machine learning algorithms for an automatic road-sign detection and recognition system using HOG feature and Neural networks. Our system is able to detect and recognize almost road sign categories such as prohibition, danger, warning and information which are not overlapped. The experiments are carried out on the dataset of 31 video files. The average time to detect and identify the road signs on a frame image is approximately 0.021 seconds when using the classification model with the MLP neural network model, and approximately 0.099 seconds when using the SVM classification model. The accuracy rate for road sign identification is about 94% for both models.
TÓM TẮT
Trong bài báo này, chúng tôi trình bày thuật toán xử lý ảnh và máy học để tự động phát hiện và nhận dạng biển báo giao thông đường bộ sử dụng đặc trưng cục bộ HOG và mạng Nơron nhân tạo. Hệ thống của chúng tôi có khả năng phát hiện và nhận dạng hầu hết các loại biển báo giao thông như biển báo cấm, biển báo nguy hiểm, biển hiệu lệnh và biển chỉ dẫn không bị chồng lấp. Thực nghiệm được tiến hành với 31 video với thời gian trung bình để phát hiện và nhận dạng các biển báo giao thông trên một frame ảnh xấp xỉ 0.021 giây khi sử dụng mô hình phân lớp với mạng nơron nhân tạo và khoảng 0.099 giây khi dùng mô hình phân lớp SVM và độ chính xác nhận dạng khoảng 94%.
Trương Quốc Bảo, Nguyễn Minh Luân, Quách Tuấn Văn, 2015. Phát triển thuật toán xử lý ảnh để phát hiện và ước lượng khoảng cách từ hệ camera đến tâm quả cà chua chín trên cây. Tạp chí Khoa học Trường Đại học Cần Thơ. 36: 112-120
Trương Quốc Bảo, 2013. GIẢI THUẬT ĐƠN GIẢN ĐỂ PHÁT HIỆN LÀN ĐƯỜNG VÀ ĐIỀU KHIỂN LÁI CHO ÔTÔ TỰ HÀNH. Tạp chí Khoa học Trường Đại học Cần Thơ. Chuyên Đề CNTT: 134-142
Trương Quốc Bảo, Võ Văn Phúc, 2013. GIẢI THUẬT MỚI CHO BÀI TOÁN ĐỊNH VỊ VÀ NHẬN DẠNG BIỂN SỐ XE Ô TÔ. Tạp chí Khoa học Trường Đại học Cần Thơ. 27: 44-55
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên