Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
22 (2022) Trang: 8418
Tạp chí: Sensor

Rational water and fertilizer management approaches and technologies could improve water use efficiency and fertilizer use efficiency in paddy rice cultivation. A promising water-conserving technology for paddy rice farming is the alternate wetting and drying irrigation system, established by the International Rice Research Institute. However, the strategy has still not been widely adopted, because water level measurement is challenging work and sometimes leads to a decrease in the rice yield. For the easy implementation of alternate wetting and drying among farmers, we analyzed a dataset obtained from a farmer’s water management study carried out over a three-year period with three cropping seasons at six locations (n = 82) in An Giang Province, Southern Vietnam. We observed a significant relationship between specific water level management and the rice yield and greenhouse gas emissions during different growth periods. The average water level during the crop period was an important factor in increasing the rice yield and reducing greenhouse gas emissions. The average water level at 2 days after nitrogen fertilization also showed a potential to increase the rice yield. The greenhouse gas emissions were reduced when the number of days of non-flooded soil use was increased by 1 day during the crop period. The results offer insights demonstrating that farmers’ implementation of multiple drainage during whole crop period and nitrogen fertilization period has the potential to contribute to both the rice yield increase and reduction in greenhouse gas emissions from rice cultivation.

 


Vietnamese | English






 
 
Vui lòng chờ...