Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
131 (2021) Trang:
Tạp chí: Computers in Biology and Medicine

The electron transport chain is a series of protein complexes embedded in the process of cellular respiration, which is an important process to transfer electronsand other macromolecules throughout the cell. Identifying Flavin Adenine Dinucleotide (FAD) binding sites in the electron transport chain is vital since it helps biological researchers precisely understand how electrons are produced and are transported in cells. This study distills and analyzes the contextualized word embedding from pre-trained BERT models to explore similarities in natural language and protein sequences. Thereby, we propose a new approach based on Pre-training of Bidirectional Encoder Representations from Transformers (BERT), Position-specific Scoring Matrix profiles (PSSM), Amino Acid Index database (AAIndex) to predict FAD-binding sites from the transport proteins which are found in nature recently. Our proposed approach archives 85.14% accuracy and improves accuracy by 11%, with Matthew's correlation coefficient of 0.39 compared to the previous method on the same independent set. We also deploy a web server that identifies FAD-binding sites in electron transporters available for academics at http://140.138.155.216/fadbert/.

 
 


Vietnamese | English






 
 
Vui lòng chờ...