Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Tran Khanh Dang, Josef Küng, and Tai M. Chung (2022) Trang: 706-713
Tạp chí: Future Data and Security Engineering Big Data, Security and Privacy, Smart City and Industry 4.0 Applications

Learning resource recommendation systems can help learners find suitable resources (e.g., books, journals, …) for learning and research. In particular, in the context of online learning due to the impact of the COVID-19 pandemic, the learning resource recommendation is very necessary. In this study, we propose using session-based recommendation systems to suggest the learning resources to the learners. Experiments are performed on a learning resource dataset collected at a local university and a public dataset. After preprocessing the data to convert it to session form, the Neural Attentive Session-based Recommendation (NARM) and Recurrent Neural Networks (GRU4Rec) models were used for training, testing, and comparison. The results show that recommending learning resources according to the NARM model is more effective than that of the GRU4Rec model, and thus, using the session-based recommendation system would be a promising approach for learning resource recommendation.

 


Vietnamese | English






 
 
Vui lòng chờ...