Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
19 (2022) Trang:
Tạp chí: International Journal of Environmental Research and Public Health

Monitoring ex-situ water parameters, namely heavy metals, needs time and laboratory work for water sampling and analytical processes, which can retard the response to ongoing pollution events. Previous studies have successfully applied fast modeling techniques such as artificial intelligence algorithms to predict heavy metals. However, neither low-cost feature predictability nor explainability assessments have been considered in the modeling process. This study proposes a reliable and explainable framework to find an effective model and feature set to predict heavy metals in groundwater. The integrated assessment framework has four steps: model selection uncertainty, feature selection uncertainty, predictive uncertainty, and model interpretability. The results show that Random Forest is the most suitable model, and quick-measure parameters can be used as predictors for arsenic (As), iron (Fe), and manganese (Mn). Although the model performance is auspicious, it likely produces significant uncertainties. The findings also demonstrate that arsenic is related to nutrients and spatial distribution, while Fe and Mn are affected by spatial distribution and salinity. Some limitations and suggestions are also discussed to improve the prediction accuracy and interpretability.

 


Vietnamese | English






 
 
Vui lòng chờ...