Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Hamido Fujita, Yutaka Watanobe, Takuya Azumi (2022) Trang: 499-506
Tạp chí: Frontiers in Artificial Intelligence and Applications
Liên kết: 10.3233/FAIA220279

IoT applications have been used in many contexts, especially applications on mobile devices. This work presents an attendance checking system by identifying and recognizing human faces on mobile devices using a transfer learning approach. This system includes a mobile application and a web application. These two applications are communicated by using APIs. The mobile application detects human faces by using the camera on that mobile device, then, the face features are extracted using the FaceNet model, and finally, the attendees are identified by computing similarity with existing faces in the database. The proposed system was tested on a dataset with 358 images of 52 employees in our office. Results show that the accuracy is about 93.46% on the test set and 97.06% in the real environment. Thus, this system could be used for checking attendances in several real contexts.

 


Vietnamese | English






 
 
Vui lòng chờ...