Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Tran Khanh Dang, Josef Küng, Tai M. Chung, Makoto Takizawa (Eds.) (2021) Trang: 224-237
Tạp chí: Communications in Computer and Information Science

Dropping out of school is a problem in most countries worldwide and leads to many adverse effects on the family and society. Therefore, early predicting the risk of dropping out of high school can help educators have interventions and efficient solutions in reducing the high school dropout rate. In this work, we present a machine learning model to predict the risk of school dropout. This model was built from the dataset, including 10,219 student records with 807 dropouts (7.89%) in high schools in Ca Mau province. The results show that the models Naïve Bayes, Decision Tree with Bagging, Random Forest with Bagging give the best results with Area Under the Curve at 83.01%, 80.95%, 83.16%, and accuracy, precision, recall, f1-score are all over 80%. In addition, we also extracted important features playing a decisive contribution in predicting school dropout, including Grade Point Average, school code, Conduct, Age, and Class.

 


Vietnamese | English






 
 
Vui lòng chờ...