Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2020) Trang: 1-18
Tạp chí: Journal of Intelligent Manufacturing

The paradigm shift toward Industry 4.0 is not solely completed by enabling smart machines in a factory but also by facilitating human capability. Refinement of work processes and introduction of new training approaches are necessary to support efficient human skill development. This study proposes a new skill transfer support model in a manufacturing scenario. The proposed model develops two types of deep learning as the backbone: a convolutional neural network (CNN) for action recognition and a faster region-based CNN (R-CNN) for object detection. A case study using toy assembly is conducted utilizing two cameras with different angles to evaluate the performance of the proposed model. The accuracy for CNN and faster R-CNN for the target job reached 94.5% and 99%, respectively. A junior operator can be guided by the proposed model given that flexible assembly tasks have been constructed on the basis of a skill representation. In terms of theoretical contribution, this study integrated two deep learning models that can simultaneously recognize the action and detect the object. The present study facilitates skill transfer in manufacturing systems by adapting or learning new skills for junior operators.

Các bài báo khác
260 (2017) Trang: 739-750
Tạp chí: European Journal of Operational Research
 


Vietnamese | English






 
 
Vui lòng chờ...