Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
266 (2019) Trang: 150-162
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 266)
Liên kết:

Context-aware recommender systems researches now concentrate on adjusting recommendation results for situations specific context of the users. These studies suggest many ways to integrate user contextual information into the recommendation process such as using topic hierarchies with matrix factorization techniques to improve context-aware recommender systems, measuring frequency-based similarity for context-aware recommender systems, collecting data from social networking to support context-aware recommender systems, and so on. However, these studies mainly focus on the development of context-aware recommendation algorithms to propose items to users in a particular situation and do not care about the extent of contextual involvement in the recommendation process to make recommendation results. In this article, we propose a new approach for context-aware recommender systems based on objective interestingness measures to consider the contextual relationship of the users in the recommendation process. Based on the experimental results on two standard datasets, the proposed model is more accurate than the traditional models.

 


Vietnamese | English






 
 
Vui lòng chờ...