Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
3(4) (2019) Trang: 533-547
Tạp chí: Journal of Information & Telecommunication

In recent years, cancer is one of the leading causes of death worldwide. Therefore, there are more and more studies that have been conducted to find effective solutions to diagnose and treat cancer. However, there are still many challenges in cancer treatment because possible causes of cancer are genetic disorders or epigenetic alterations in the cells. RNA sequencing is a powerful technique for gene expression profiling in model organisms and it is able to produce information for diagnosing cancer at the biomolecular level. Gene expression data are used to build a classification model which supports treatment of cancer. Nevertheless, its characteristic is very-high-dimensional data which lead to over-fitting issue of classifying model. In this paper, we propose a new gene expression classification model of support vector machines (SVM) using features extracted by deep convolutional neural network (DCNN). In our approach, the DCNN extracts latent features from gene expression data, then they are used in conjunction with SVM that efficiently classify RNA-Seq gene expression data. Numerical test results on RNA-Seq gene expression datasets from The Cancer Genome Atlas (TCGA) illustrate that our proposed algorithm is more accurate than state-of-the-art classifying models including DCNN, SVM and random forests.

 


Vietnamese | English






 
 
Vui lòng chờ...