Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Volume 33, 2018 - Issue 6 (2018) Trang:
Tạp chí: Geocarto International

This study developed an approach to map rice-cropping systems in An Giang and Dong Thap provinces, South Vietnam using multi-temporal Sentinel-1A (S1A) data. The data were processed through four steps: (1) data pre-processing, (2) constructing smooth time series VH backscatter data, (3) rice crop classification using random forests (RF) and support vector machines (SVM) and (4) accuracy assessment. The results indicated that the smooth VH backscatter profiles reflected the temporal characteristics of rice-cropping patterns in the study region. The comparisons between the classification results and the ground reference data indicated that the overall accuracy and Kappa coefficient achieved from RF were 86.1% and 0.72, respectively, which were slightly more accurate than SVM (overall accuracy of 83.4% and Kappa coefficient of 0.67). These results were reaffirmed by the government’s rice area statistics with the relative error in area (REA) values of 0.2 and 2.2% for RF and SVM, respectively.

 


Vietnamese | English






 
 
Vui lòng chờ...