Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2018) Trang: 233-243
Tạp chí: Modern Approaches for Intelligent Information and Database Systems

Support vector machines (SVM) and deep convolutional neural networks (DCNNs) are state-of-the-art classification techniques in many real-world applications. Our investigation aims at proposing a hybrid model combining DCNNs and SVM (called DCNN-SVM) to effectively predict very-high-dimensional gene expression data. The DCNN-SVM trains the DCNNs model to automatically extract features from microarray gene expression data and followed which the DCNN-SVM learns a non-linear SVM model to classify gene expression data. Numerical test results on 15 microarray datasets from Array Expression and Medical Database (Kent Ridge) show that our proposed DCNN-SVM is more accurate than the classical DCNNs algorithm, SVM, random forests.

Các bài báo khác
(2018) Trang: 137-144
Tạp chí: International Symposium on Information and Communication Technology 2018
 


Vietnamese | English






 
 
Vui lòng chờ...