Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
6(17) (2019) Trang: 1-8(e4)
Tạp chí: EAI Endorsed Transactions on Context-aware Systems and Applications

Discovering knowledge in archival data is the goal of researchers. One of them is collaborative filtering recommender system is developing fastly today. It may be rather effective in sparse and "long tail" datasets. Calculating to make decision based on many criteria is really necessary. Relationships, interactions between criteria need to have been fully considered, decision will be more reliable and feasible. In this paper, we propose a new approach that builds a recommender decision-making model based on importance of item, set of items with Shapley value. This model also incorporates traditional techniques and some our new approaches and was tested, evaluated on multirecsys tool we develope from some available tools and uses standardized datasets to experiment. Experimental results show that the proposed model is always satisfactory and reliable. They can be applied in appropriate contexts to minimize limitations of recommender system today and is a research way next time

Các bài báo khác
579 (2024) Trang: 43-53
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
(2023) Trang: 249-257
Tạp chí: Hội nghị Khoa học công nghệ Quốc gia lần thứ XV về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR 2022)
 


Vietnamese | English






 
 
Vui lòng chờ...