Text summarization produces a shortened or condensed version of input text highlighting its central ideas. Generating text summarization manually takes time and effort. This paper investigates several text summarization models based on neural networks, including extractive summarization, abstractive summarization, and abstractive summarization based on the re-writer approach and bottom-up approach. We perform experiments on the CTUNLPSum dataset in Vietnamese comprising 95,579 documents collected from commonly read Vietnamese online newspapers. The summarization model based on the bottom-up approach creates the best summaries. The F1-scores of ROUGE-1, ROUGE2, and ROUGE-L of the bottom-up approach are 0.598, 0.260, and 0.455, respectively.
Tạp chí: Association for Computational Linguistics (ACL 2023), In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, 2023
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên