In this study, we build a chatbot system in a closed domain with the RASA framework, using several models such as SVM for classifying intents, CRF for extracting entities and LSTM for predicting action. To improve responses from the bot, the kNN algorithm is used to transform false entities extracted into true entities. The knowledge domain of our chatbot is about the College of Information and Communication Technology of Can Tho University, Vietnam. We manually construct a chatbot corpus with 19 intents, 441 sentence patterns of intents, 253 entities and 133 stories. Experiment results show that the bot responds well to relevant questions.
Tạp chí: Association for Computational Linguistics (ACL 2023), In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, 2023
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên