In the age of information explosion today, the Recommender systems have become increasingly important and popular in supporting human decision-making problems. In the Recommender Systems, Collaborative filtering is one of the most popular and effective techniques available today in the recommender system. However, most of them use symmetric similarity measures. Therefore, the default effect and the role of the pair of users are the same, but in practice this may not be true. In this paper, we propose a method new approach in building the collaborative filtering recommender system in the implication field, uses the asymmetry measures to rank and filter the information to improve accurate precision of the traditional recommender systems.
Tạp chí: Hội nghị Quốc gia về nghiên cứu cơ bản và ứng dụng công nghệ thông tin lần thứ 10 (FAIR 2017) nghị Quốc gia về nghiên cứu cơ bản và ứng dụng công nghệ thông tin lần thứ 10 (FAIR 2017)
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên